
Detailed Security Analysis of Serverless 
Functions With Interpreted Languages 

(sdmay24-26)
Client/ Advisor: Berk Gulmezoglu

Team: Trent Walraven, Samuel Potter, Cameron Hurt, Dillon Hacker, Michael Gohr

Problem: Serverless functions are widely 
offered as a service by cloud providers. 
However, their security is underexplored.
Solution: Create a side-channel attack to 
identify Lambda functions being run. Then 
create a security analysis that will highlight our 
findings and show potential vulnerabilities in 
serverless functions.
Intended Users: Cybersecurity professionals 
and technology enthusiasts.
Intended Uses: Any lambda function users. 
These functions are widely used by both 
organizations and individuals.

Introduction
Functional Requirements: 
● Code that is well documented, and able to be 

understood by anyone looking to translate 
the code into another SDK for a different 
cloud provider

● Functions are short-lived, anything defined 
as a vulnerability needs to actually run in the 
cloud environment constraints

Non-Functional Requirements:
● If there is reasonable concern of a 

vulnerability existing, go through the proper 
channels to safely report the issue, and only 
publish information after a fix is implemented

● Do not put public cloud tenants at risk.
Constraints: 
● We do not have access to Amazon’s server 

so we are having to replicate Amazon’s 
servers and test everything locally. 

● Constrained to interpreted languages that 
are accepted by Lambda functions.

Design 
Requirements

Concerns: 
● Successful replication of Amazon’s 

environment 
● Finding suitable Lambda functions
● Viability of side channel attacks with 

protections already in place

Limitations: 
● Do not have access to Amazon’s environment
● Limited by the amount of tests we can run on 

our shared server
● Limitation of small execution footprint of 

serverless functions

Technical Details

Environment:
● All testing done outside of the public cloud
● This had some limitations but insured a safe 

testing environment
Strategy:
● Started testing using a testbench

● Continued testing using our Webserver and 
related components

Results:
● Results were more consistent when using the 

testbench
● Multiple high usage functions cause a 

noticeable impact on the cache

Testing

Design 
Approach


