Detailed Security Analysis of Serverless

Functions With Interpreted Languages
(sdmay24-26)

Client/ Advisor: Berk Gulmezoglu
Team: Trent Walraven, Samuel Potter, Cameron Hurt, Dillon Hacker, Michael Gohr

Problem: Serverless functions are widely
offered as a service by cloud providers.
However, their security is underexplored.
Solution: Create a side-channel attack to
identify Lambda functions being run. Then
create a security analysis that will highlight our
findings and show potential vulnerabilities in
serverless functions.

Intended Users: Cybersecurity professionals
and technology enthusiasts.

Intended Uses: Any lambda function users.
These functions are widely used by both
organizations and individuals.

Functional Requirements:
e Code that is well documented, and able to be
understood by anyone looking to translate
the code into another SDK for a different
cloud provider

Functions are short-lived, anything defined

as a vulnerability needs to actually run in the

cloud environment constraints

Non-Functional Requirements:

e If there is reasonable concern of a
vulnerability existing, go through the proper
channels to safely report the issue, and only
publish information after a fix is implemented

e Do not put public cloud tenants at risk.

Constraints:

e \We do not have access to Amazon’s server

so we are having to replicate Amazon’s

servers and test everything locally.

Constrained to interpreted languages that

are accepted by Lambda functions.

(Side-Channel Primitives}

Environment:

e All testing done outside of the public cloud

e This had some limitations but insured a safe
testing environment

Strateqgy:

e Started testing using a testbench

"_a'*'.v{"y" | w ’v‘. ' "‘ '\ ﬁM
Al 'hlw‘fq } { VV‘W\A“ (| \

ol AN o e

Refined Functional
Primitives in Lambda

Environment

/ @ \ Emulated Cloud Environment

{Large Scale Data Collection] (Low output attack code} [Cloud Tenant's Functions]

/
Training Data ’

/ Leaked Data

{ Identify Lambda } l

Functions L Leak Capture J

e Continued testing using our Webserver and
related components

Concerns:

e Successful replication of Amazon’s
environment

e Finding suitable Lambda functions

e Viablility of side channel attacks with
protections already in place

Lambda Imprint on Cache using Memory Access Time

- Lambda Run 1
Lambda Run 2
0.025 - —— Lambda Run 3

a

Memory Access Time (Milliseconds)

Limitations:

e Do not have access to Amazon’s environment

e Limited by the amount of tests we can run on
our shared server

e Limitation of small execution footprint of

serverless functions

750 1000 1250 1500 1750 2000 2250
Sample Iteration (5 Millisecond intervals)

Results:

e Results were more consistent when using the
testbench

e Multiple high usage functions cause a
noticeable impact on the cache

